SECTION THREE

DATA PRESENTATION

KEY CONTENT:

- 1. DATA PRESENTATION OF RESIDENTIAL DECAY
- 2. DATA PRESENTATION OF ENVIRONEMTAL SURVEY
- 3. DATA PRESENTATION OF PERCEPTION SURVEY
- 4. DATA PRESENTATION OF INDEX OF SERVICES AND AMENITIES
- 5. SECONDARY DATA
- 6. RELIABILITY OF DATA

It is difficult to compare or analyse raw data. The purpose of this section is therefore to demonstrate my results visually so that I can analyse them more conveniently in the next section. Also, some of my data may be biased due to various factors. In this section I will examine the reliability of my data with Mann Whitney U-Test.

1. Residential Decay

Table 3.1 - Data Table for Residential Decay

Features	Z1	Z2	Z3	Z4
Deterioration of walls	1	3	5	5
Part peeling	2	3	3	3
Broken glass in windows	7	7	7	7
structural damage	11	11	11	11
Rotting timber	8	8	8	8
Broken gutters, etc	7	7	7	7
TOTAL	36	39	41	41

Z1 = New Mina
Z2 = Old Mina
Z3 = Diagonal Mar
Z4 = Diagonal Mar

2. Environmental Survey

Table 3.2 - Data table for Environmental Survey z2 z3 Features z1 z4 Landscape Quality 4 4 8 8 5 Derelict Land 10 10 10 Litter/Vandalism 0 0 8 8 Industrial workshop premises 5 10 10 10 Noise 5 5 Air pollution 10 0 10 10

2

6

27

6

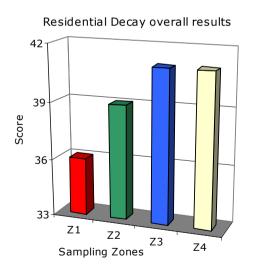
47

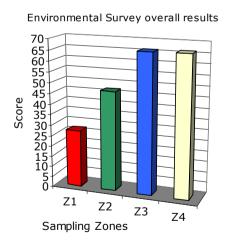
4 | 4

6

61 61

6


Diagram 3.2 – Bar Chart for Environmental Survey


Traffic flow

Total

Recreational Amenities

Diagram 3.1 - Bar Chart for Residential Decay

I used Bar Charts for Environmental Survey and Residential Decay Survey because Bar Charts can demonstrate visually the difference between the zones and clarify trends better than do tables.

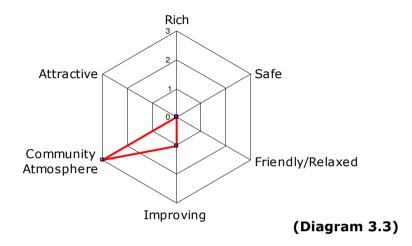
3. Perception Survey

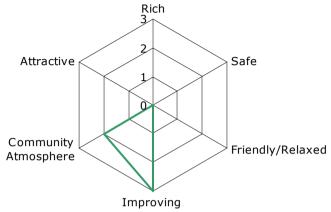
Table 3.3 - Perception Survey Positive Features

Positive Features	Zone 1	Zone 2	Zone 3	Zone 4
Rich	0	0	3	3
Safe	0	0	3	3
Friendly/Relaxed	0	0	3	3
Improving	1	3	3	3
Community Atmosphere	3	2	2	1
Attractive	0	0	3	3
Total	4	5	17	16

Table 3.4 - Perception Survey Negative Features

Negative Features	Zone 1	Zone 2	Zone 3	Zone 4
Poor	- 3	- 2	0	0
Dangerous	- 3	- 1	0	0
Declining	0	0	0	0
Risk of crime	- 3	- 1	0	0
Unattractive area	- 3	- 1	0	0
Vandalised	- 2	- 1	0	0
Total	- 14	- 6	0	0

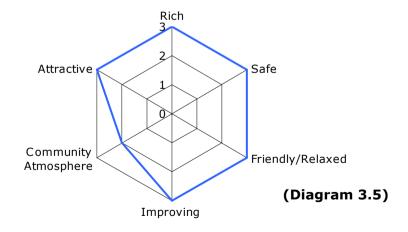

Justifications for using Radar Charts:

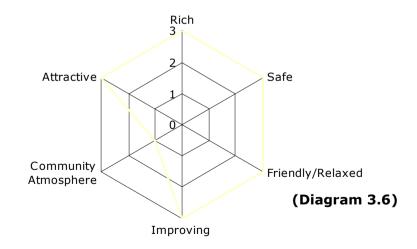

- Demonstrate visually how each feature makes up the final score
- □ Clarify multi-features better than do tables
- Permit a visual check of the contrast between each zones
- □ Add emphasis to significant features

Liminations of Radar Charts:

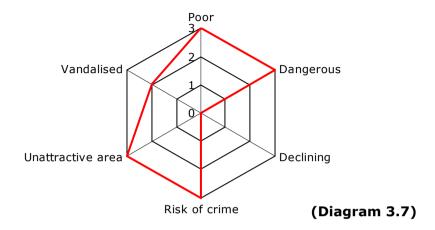
- $\hfill\Box$ \hfill 0 score is not clearly demonstrated
- □ Fails to reveal proportions or patterns
- □ Difficult to present data with a wide range

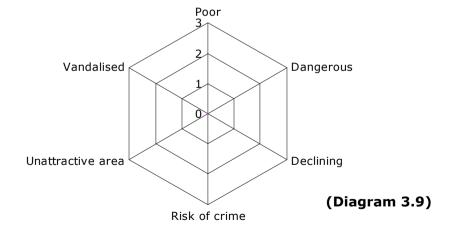
Positive Features Zone 1

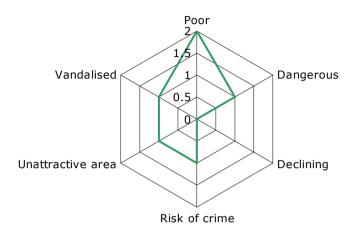



Positive Feature Zone 2

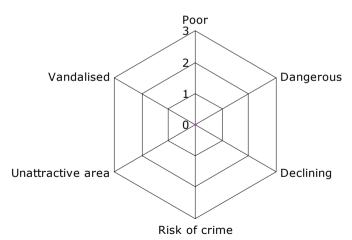
(Diagram 3.4)


Positive Features Zone 3


Positive Features Zone 4


Negative Features Zone 1

Negative Features Zone 3



Negative Features Zone2

(Diagram 3.8)

Negative Features Zone 4

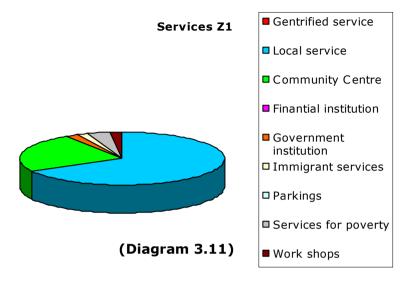
(Diagram 3.10)

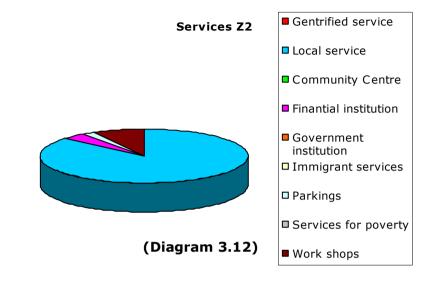
4. Index of Services

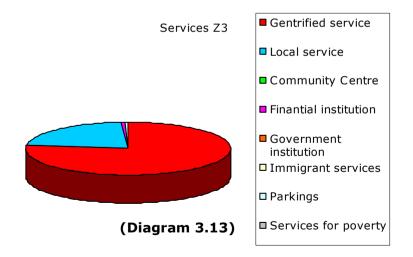
Table 3.5 - Service Number Count

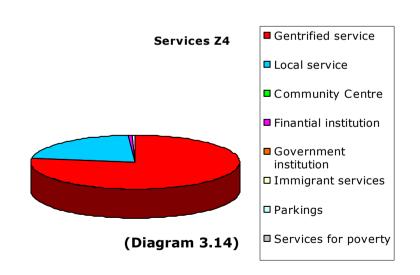
Services	Z1	Z2	Z3	Z4
Gentrified service	0	0	148	148
Local service	37	43	42	42
Community Centre	13	0	0	0
Financial institution	0	2	1	1
Government institution	1	0	0	0
Immigrant services	1	0	0	0
Parking	0	1	1	1
Services for poverty	2	0	0	0
Work shops	1	4	0	0
Total number	55	50	192	192

Table 3.6 - Service Percentage


Services	Z1	Z2	Z3	Z4
Gentrified service	0	0	77	77
Local service	67	86	22	22
Community Centre	24	0	0	0
Financial institution	0	4	0.5	0.5
Government institution	1.8	0	0	0
Immigrant services	1.8	0	0	0
Parking	0	2	0.5	0.5
Services for poverty	3.6	0	0	0
Work shops	1.8	8	0	0
Total number	100	100	100	100


Justification for using Pie Charts


- □ Display relative proportions of each service
- $\ \square$ Size of the circle can be made proportional to the total quantity it represents
- □ Summarise a large data set in visual form
- □ More straightforward than other types of graphs


Disadvantages

- □ Do not easily reveal exact values
- □ Difficult to compare differences between each zone

5. Reliability of Data

Mann-Whitney U-Test tells us whether the differences between the two sets of sample data are truly significant.

Environmental Survey data set:

1. Simplified table of data. The simplified table includes only scores. Categories are omitted since it is the overall score I am interested in.

2. Instead of Z1, Z3, Z3 and Z4, I will label the four sets of data A, B, C and D.

3. I will compare two sets of data at a time, and I will place all the data together in rank order, from lowest to highest. I will first compare A and C:

4. I will inspect 'C' samples and count the total number of 'A' s preceding a C data. I will add up the total to find the *U* number. I will repeat the process for A:

Set No. of 'C's Preceding each 'A' Total (U

- 5. I will take the smaller of the two *U* numbers, 10, and look it up in a given table:

 The critical value from the table was 1.0; this means that the possibility of the difference environmental quality between the two occurring by chance is only 1.0 % i.e. the difference is significant and my results were very reliable.
- 6. I repeat the process to compare between B-C. 'C' and 'D' have the same score, so it is not necessary to find U value for them separately

The same process is carried out for each one of my surveys. All of them were found reliable and I can therefore go on to analyse these data.